Strona główna / Eye Tracking wspomagany uczeniem maszynowym
Mikroblog

Eye Tracking wspomagany uczeniem maszynowym

Kolega podesłał mi narzędzie, które z wykorzystaniem wyników 30.000 testów eye trackingowych i algorytmów uczenia maszynowego, weryfikuje sposób postrzegania naszych kreacji lub designu.

Narzędzie nazywa się Attention Insight i zyskało spore zainteresowanie na Product Hunt. Według autorów osiąga nawet 94% zbieżność z realnymi wynikami tej metody.

Przy czym pamiętajcie, że eye tracking, mimo że diabelsko efektowny, w biznesie i User Experience jest poboczną metodą. Jest to wbrew pozorom metoda ilościowa, do tego bliższa światu nauki i wiedzy o percepcji niż zarabianiu pieniędzy.

Główne minusy:

  • Liczba respondentów – eye tracking to podejście bardziej ilościowe niż jakościowe, wymaga więc relatywnie dużej grupy uczestników
  • Kosztowne – zarówno czas do przeprowadzenia badania, koszty rekrutacji i wyposażenia są wysokie
  • Ograniczony zakres badania – poznajemy precyzyjnie wąski element rzeczywistości. Nie poznamy najważniejszych dla UX Designera motywacji i powodów zachowań
  • Stosunek insightów do kosztów. Skoro musimy zapłacić dużo, a dowiadujemy się relatywnie niewiele, w biznesie trudno o realne zastosowanie.

Pokazując narzędzie zespołowi wszyscy mieli te same obawy, co do rzetelności wyników i realnej przydatności. Eye tracking w biznesie przyda się w specyficznych sytuacjach (jedna  z nich poniżej).  Wyniki badań i wiedzę o ludzkiej percepcji można pozyskać z opracowań naukowych. Co więc zamiast eye trackingu? W wielu przypadkach testy użyteczności.

Poniżej przykład zastosowania narzędzia przy analizie percepcji win na półce oraz banneru reklamowego (ten ostatni jak widać, zdał egzamin).

 

 

UX w praktyce

Twitter dla UX-a, analityka, PM-a? Właśnie tak! Szybkie, ale merytoryczne wpisy o polskim i zagranicznym tworzeniu produktów cyfrowych.

Chcesz coś opublikować? Napisz: hello@webmetric.com

    Bądź na bieżąco z wiedzą o User Experience!